Rabu, 08 Juni 2016

Parallel Computation

Komputasi paralel adalah salah satu teknik melakukan komputasi secara bersamaan dengan memanfaatkan beberapa komputer secara bersamaan. Biasanya diperlukan saat kapasitas yang diperlukan sangat besar, baik karena harus mengolah data dalam jumlah besar ataupun karena tuntutan proses komputasi yang banyak. Untuk melakukan aneka jenis komputasi paralel ini diperlukan infrastruktur mesin paralel yang terdiri dari banyak komputer yang dihubungkan dengan jaringan dan mampu bekerja secara paralel untuk menyelesaikan satu masalah. Untuk itu diperlukan aneka perangkat lunak pendukung yang biasa disebut sebagai middleware yang berperan untuk mengatur distribusi pekerjaan antar node dalam satu mesin paralel. Selanjutnya pemakai harus membuat pemrograman paralel untuk merealisasikan komputasi.

Komputer dikatakan sebagai mesin komputasi paralel jika memenuhi beberapa syarat berikut ini:

-Data yang diproses dipecah menjadi bagian-bagian terpisah yang bekerja secara independen dan terus-menerus. 

- Proses pengeksekusian instruksi ganda. Sehingga dalam sekali waktu, bisa dihasilkan 2 atau lebih suatu output data. Untuk lebih detilnya bisa dibaca pada sub bab taksonomi Flynn. Yang dalam hal ini sangat berbeda dengan paradigma perkembangan pengolahan data yang berkisar pelebaran jalur data, bukan penjamakan instruksi 

- Dapat menyelesaikan tugas lebih cepat daripada dengan perangkat serial. 


Parallelism Concept

Paralelisme (parallelism) lahir dari pendekatan yang biasa dipergunakan oleh para perancang sistem untuk menerapkan konsep pemrosesan konkuren. Teknik ini meningkatkan kecepatan proses dengan cara memperbanyak jumlah modul perangkat keras yang dapat beroperasi secara simultan disertai dengan membentuk beberapa proses yang bekerja secara simultan pada modul-modul perangkat keras tersebut. Secara formal, pemrosesan paralel adalah sebuah bentuk efisien pemrosesan informasi yang menekankan pada eksploitasi dari konkurensi kejadian-kejadian dalam proses komputasi.

Pemrosesan paralel dapat juga terjadi pada proses di antara prosedurprosedur atau perintah perintah (segmen program) pada sebuah program.Untuk meningkatkan kecepatan proses komputasi, dapat ditempuh dua cara :

Peningkatan kecepatan perangkat keras.

Komponen utama perangkat keras komputer adalah processor. Meskipun kecepatan processor dapat ditingkatkan terus, namun karena keterbatasan materi pembuatnya, tentu ada suatu batas kecepatan yang tak mungkin lagi dapat dilewati. Karena itu timbul ide pembuatan komputer multiprocessor. Dengan adanya banyak processor dalam satu komputer, pekerjaan bisa dibagi-bagi kepada masing-masing processor. Dengan demikian lebih banyak proses dapat dikerjakan dalam satu saat. Peningkatan kecepatan setiap proses bisa dicapai melalui peningkatan kecepatan perangkat lunak. Kecepatan perangkat lunak sangat ditentukan oleh algoritmanya.

Peningkatan kecepatan perangkat lunak.
Program komputer untuk komputer sekuensial harus menyediakan sederetan operasi untuk dikerjakan oleh prosesor tunggal. Program komputer untuk komputer paralel harus menyediakan sederetan operasi untuk beberapa prosesor untuk dikerjakan secara paralel, termasuk operasi untuk mengatur dan mengitegrasikan prosesor-prosesor yang terpisah tersebut mengerjakan suatu komputasi yang koheren. Kebutuhan akan pembuatan dan pengaturan berbagai aktivitas komputasi paralel menambah dimensi baru proses dari pemrograman komputer. Algoritma untuk problem yang spesifik harus diformulasikan sedemikian rupa, agar menghasilkan aliran operasi paralel yang kemudian akan dieksekusi di prosesor yang berbeda. Karena itu, meskipun arsitektur multiprosesor dan multikomputer mempunyai pontensi yang tinggi untuk meningkatkan kemampuan komputasi, potensi ini akan tercapai melalui pengertian yang baik mengenai bahasa pemrograman paralel dan perancangan algoritma paralel.

Jenis-Jenis Pemrosesan Paralel
Pemrosesan paralel dapat dibagi ke dalam beberapa klasifikasi, sebagai berikut :
1. Berdasarkan simetri penjadwalannya, pemrosesan parallel dapat dibagi dalam beberapa jenis:
a) Asymmetric Multiprocessing (ASMP)
b) Symmetric Multiprocessing (SMP)
c) ClusteringPoliteknik Telkom Sistem Komputer

2. Berdasarkan aliran instruksi dan datanya, pemrosesan parallel dapat dibagi dalam beberapa jenis:
a) SISD (Single Instruction on Single Data Stream)
b) SIMD (Single Instruction on Multiple Data Stream)
c) MISD (Multiple Instruction on Single Data Stream)
d) MIMD (Multiple Instruction on Multiple Data Stream)
3. Berdasarkan kedekatan antar prosesor, pemrosesan parallel dapat dibagi dalam beberapa jenis:
a) Multikomputer (Loosely Coupled/ local memory) dengan memori yang terdistribusi
b) Multiprosesor (Tightly Coupled/ global memory) dengan memori yang dapat digunakan bersama (shared memory)

Distributed Processing : 

Mengerjakan semua proses pengolahan data secara bersama antara komputer pusat dengan beberapa komputer yang lebih kecil dan saling dihubungkan melalui jalur komunikasi. Setiap komputer tersebut memiliki prosesor mandiri sehingga mampu mengolah sebagian data secara terpisah, kemudian hasil pengolahan tadi digabungkan menjadi satu penyelesaian total. Jika salah satu prosesor mengalami kegagalan atau masalah yang lain akan mengambil alih tugasnya.

Arsitektur Komputer Paralel

Berdasarkan jumlah aliran instruksi dan aliran datanya, Michael J. Flynn pada tahun 1966 mengelompokkan komputer digital menjadi empat golongan besar [Hwa85]. Aliran instruksi (instruction stream)adalah urutan instruksi yang dieksekusi oleh sistem komputer, sedangkan aliran data (data stream) adalah urutan data yang diolah termasuk data masukan, bagian dari data, maupun data sementara yang dipanggil atau digunakan oleh aliran instruksi.


Keempat kelompok komputer tersebut adalah :
1. Komputer SISD (Single Instruction stream-Single Data stream)
Pada komputer jenis ini semua instruksi dikerjakan terurut satu demi satu, tetapi juga dimungkinkan adanya overlapping dalam eksekusi setiap bagian instruksi (pipelining). Pada umumnya komputer SISD berupa komputer yang terdiri atas satu buah pemroses (single processor). Namun komputer SISD juga mungkin memiliki lebih dari satu unit fungsional (modul memori, unit pemroses, dan lain-lain), selama seluruh unit fungsional tersebut berada dalam kendali sebuah unit pengendali. Skema arsitektur global komputer SISD.

2. Komputer SIMD (Single Instruction stream-Multiple Data stream)
Pada komputer SIMD terdapat lebih dari satu elemen pemrosesan yang dikendalikan oleh sebuah unit pengendali yang sama. Seluruh elemen pemrosesan menerima dan menjalankan instruksi yang sama yang dikirimkan unit pengendali, namun melakukan operasi terhadap himpunan data yang berbeda yang berasal dari aliran data yang berbeda pula.

3. Komputer MISD (Multiple Instruction stream-Single Data stream)
Komputer jenis ini memiliki n unit pemroses yang masing-masing menerima dan
mengoperasikan instruksi yang berbeda terhadap aliran data yang sama, dikarenakan setiap unit pemroses memiliki unit pengendali yang berbeda. Keluaran dari satu pemroses menjadi masukan bagi pemroses berikutnya. Belum ada perwujudan nyata dari komputer jenis ini kecuali dalam bentuk prototipe untuk penelitian.

4. Komputer MIMD (Multiple Instruction stream-Multiple Data stream)
Pada sistem komputer MIMD murni terdapat interaksi di antara npemroses. Hal ini disebabkan seluruh aliran dari dan ke memori berasal dari space data yang sama bagi semua pemroses. Komputer MIMD bersifat tightly coupled jika tingkat interaksi antara pemroses tinggi dan disebut loosely coupled jika tingkat interaksi antara pemroses rendah.



referensi : http://smilenickynick.blogspot.co.id/2014/06/komputer-paralel-arsitektur-dan.html
http://myblogisland.blogspot.co.id/2013/04/parallel-computation.html

Quantum Computation

Pengertian
Quantum Computation sendiri adalah bidang studi yang difokuskan pada teknologi komputer berkembang berdasarkan prinsip-prinsip teori kuantum , yang menjelaskan sifat dan perilaku energi dan materi pada kuantum (atom dan subatom) tingkat.
Sejarah :
  • Pada tahun 1970-an pencetusan atau ide tentang komputer kuantum pertama kali muncul oleh para fisikawan dan ilmuwan komputer, seperti Charles H. Bennett dari IBM, Paul A. Benioff dari Argonne National Laboratory, Illinois, David Deutsch dari University of Oxford, dan Richard P. Feynman dari California Institute of Technology (Caltech).
  • Feynman dari California Institute of Technology yang pertama kali mengajukan dan menunjukkan model bahwa sebuah sistem kuantum dapat digunakan untuk melakukan komputasi. Feynman juga menunjukkan bagaimana sistem tersebut dapat menjadi simulator bagi fisika kuantum. 
  • Pada tahun 1985, Deutsch menyadari esensi dari komputasi oleh sebuah komputer kuantum dan menunjukkan bahwa semua proses fisika, secara prinsipil, dapat dimodelkan melalui komputer kuantum. Dengan demikian, komputer kuantum memiliki kemampuan yang melebihi komputer klasik.
  • Pada tahun 1995, Peter Shor merumuskan sebuah algoritma yang memungkinkan penggunaan komputer kuantum untuk memecahkan masalah faktorisasi dalam teori bilangan.
  • Sampai saat ini, riset dan eksperimen pada bidang komputer kuantum masih terus dilakukan di seluruh dunia. Berbagai metode dikembangkan untuk memungkinkan terwujudnya sebuah komputer yang memilki kemampuan yang luar biasa ini. Sejauh ini, sebuah komputer kuantum yang telah dibangun hanya dapat mencapai kemampuan untuk memfaktorkan dua digit bilangan. Komputer kuantum ini dibangun pada tahun 1998 di Los Alamos, Amerika Serikat, menggunakan NMR (Nuclear Magnetic Resonance).

Entanglement

Penggabungan (entanglement) adalah sebuah keadaan yang ganjil di mana dua partikel tetap terkoneksi secara erat, meski terpisah dengan jarak yang sangat jauh, seperti dua mata dadu yang harus selalu menunjukkan jumlah yang sama ketika diputar. Untuk pertama kalinya, ilmuwan telah menemukan partikel-partikel yang tergabung (entangled) setelah partikel-partikel tersebut diukur (measured) dan bahkan dalam keadaan tidak eksis lagi.



Pengoperasian Data Qubit

Komputer kuantum memelihara urutan qubit. Sebuah qubit tunggal dapat mewakili satu, nol, atau, penting, setiap superposisi quantum ini, apalagi sepasang qubit dapat dalam superposisi kuantum dari 4 negara, dan tiga qubit dalam superposisi dari 8. Secara umum komputer kuantum dengan qubit n bisa dalam superposisi sewenang-wenang hingga 2 n negara bagian yang berbeda secara bersamaan (ini dibandingkan dengan komputer normal yang hanya dapat di salah satu negara n 2 pada satu waktu). Komputer kuantum yang beroperasi dengan memanipulasi qubit dengan urutan tetap gerbang logika quantum. Urutan gerbang untuk diterapkan disebut algoritma quantum.

Sebuah contoh dari implementasi qubit untuk komputer kuantum bisa mulai dengan menggunakan partikel dengan dua putaran menyatakan: “down” dan “up”. Namun pada kenyataannya sistem yang memiliki suatu diamati dalam jumlah yang akan kekal dalam waktu evolusi dan seperti bahwa A memiliki setidaknya dua diskrit dan cukup spasi berturut-turut eigen nilai , adalah kandidat yang cocok untuk menerapkan sebuah qubit. Hal ini benar karena setiap sistem tersebut dapat dipetakan ke yang efektif spin -1/2 sistem.


Quantum Gates



Quantum Gates adalah sebuah gerbang kuantum yang dimana berfungsi mengoperasikan bit yang terdiri dari 0 dan 1 menjadi qubits. dengan demikian Quantum gates mempercepat banyaknya perhitungan bit pada waktu bersamaan. Quantum Gates adalah blok bangunan sirkuit kuantum, seperti klasik gerbang logika yang untuk sirkuit digital konvensional.
Quantum Gates / Gerbang Quantum merupakan sebuah aturan logika / gerbang logika yang berlaku pada quantum computing. Prinsip kerja dari quantum gates hampir sama dengan gerbang logika pada komputer digital. Jika pada komputer digital terdapat beberapa operasi logika seperti AND, OR, NOT, pada quantum computing gerbang quantum terdiri dari beberapa bilangan qubits, sehingga quantum gates lebih susah untuk dihitung daripada gerang logika pada komputer digital.


Algoritma Shor

Algoritma yang ditemukan oleh Peter Shor pada tahun 1995. Dengan menggunakan algoritma ini, sebuah komputer kuantum dapat memecahkan sebuah kode rahasia yang saat ini secara umum digunakan untuk mengamankan pengiriman data. Kode yang disebut kode RSA ini, jika disandikan melalui kode RSA, data yang dikirimkan akan aman karena kode RSA tidak dapat dipecahkan dalam waktu yang singkat. Selain itu, pemecahan kode RSA membutuhkan kerja ribuan komputer secara paralel sehingga kerja pemecahan ini tidaklah efektif.


Referensi :

https://dyaherwiyanti.wordpress.com/2016/04/19/pengoperasian-data-qubit-quantum-gates-dan-algoritma-shor/
https://amoekinspirasi.wordpress.com/2014/05/15/pengertian-quantum-computing-dan-implementasinya/